HIPERTROFIA MUSCULAR. Parte I

Revisión bibliográfica de la literatura de todas sus variables

A lo largo de diversos artículos se va a tratar de exponer todas las variables relacionadas con el incremento de la masa muscular que se describe en la literatura científica y aportar claridad la infinidad de ensayos clínicos que han tenido por objetivo un incremento del tamaño de de la sesión transversal muscular.

Relaciones respecto a fuerza-hipertrofia, repetición máxima, volumen de entrenamiento, frecuencia, duración, fallo muscular, rango de movimiento, trabajo excéntrico e isoinercial, velocidad, periodos de descanso inter-intra series, técnicas especificas de entrenamiento o selección de ejercicios serán analizados desde la optimización de la hipertrofia muscular.

Introducción

La hipertrofia es un aumento en el tamaño del músculo. La hipótesis principal que la causa es un exceso sostenido de la síntesis proteica  superior a la descomposición de proteínas musculares durante un período de tiempo, dando lugar a la acumulación de proteínas pertenecientes al músculo. Por lo tanto síntesis proteica e hipertrofia son elementos diferentes. Mientras  que la síntesis proteica oscila junto con la degradación a lo largo del día con el entrenamiento y la ingesta proteica, la hipertrofia es el resultado de un balance superior entre síntesis y degradación  a lo largo de un periodo de tiempo (1).

Las mediciones que se realizan son diversas, mientras que algunos estudios utilizan la sección transversal, otros miden la masa magra o el volumen muscular en función del interés del estudio. Por ejemplo, si se trata de observar la hipertrofia de un músculo como el cuádriceps tras un periodo de entrenamiento, la sección transversal será la utilizada, pero si el objetivo es conocer cómo afecta la ingesta de diferentes cantidades de suplementación proteica, el incremento de masa magra aportará información más exacta. Resonancia magnética, tomografía, absorciometría de rayos X (DXA) o pletismografia y en menor medida, pliegues cutáneos, son sistemas utilizados en la actualidad para la valoración de los resultados.

  1. Fuerza e hipertrofia

¿Quién puede desarrollar más fuerza, un powerlifter o un culturista?. Si se tiene en cuenta el tamaño muscular como único predictor de la fuerza, la respuesta sería el culturista, pero la evidencia actual señala lo contrario.

Los powerlifters que son capaces de lograr levantamientos más pesados no desarrollan la misma hipertrofia que un culturista. Morfología, genética o ayudas exógenas no  parecen ser los causantes que puedan  explicar el porqué de esto, siendo la condición más influyente el tipo de entrenamiento que los separa y que claramente distingue su estética.

  • Relación entre tamaño y fuerza muscular

La relación entre el tamaño muscular y la fuerza es compleja. La fuerza puede verse afectada por dos grupos diferentes de factores, que son los periféricos y centrales. Los factores periféricos son aquellos dentro del músculo mismo, mientras que los factores centrales son aquellos dentro del sistema nervioso central (SNC).

Los factores periféricos influyentes en la fuerza:

Tamaño del músculo

Longitud del brazo del momento

Longitud de los fascículos

Ángulo de penetración de las fibras

Tipo de fibra muscular

Propiedades contráctiles de una sola fibra

Factores centrales que influyen en la fuerza:

Coordinación para el movimiento

Tamaño del impulso neural al músculo motor principal

Tamaño del impulso neural a los músculos estabilizadores

Tamaño de la unidad neuronal a los músculos sinérgicos

Tamaño de los niveles de coactivación agonista-antagonista

Los factores periféricos señalan como un sujeto es más fuerte que otro solo con su condición estructural, mientras que los factores centrales se ven alterados por el entrenamiento.

Esto no significa que alguien con un alto grado de hipertrofia no pueda desarrollar altos niveles de fuerza. Trecise y colaboradores en un reciente estudio mostró una alta correlación entre hipertrofia y fuerza muscular (2), pero también deja claro la importancia de otros factores como los descritos anteriormente.

La hipertrofia muscular sin embargo se rige por otros “pilares” descritos ampliamente por Schoenfeld y col. en sus múltiples investigaciones. La tensión mecánica descrita como la fuerza fisiológica que debe desarrollar el músculo durante una contracción tiene cierta similitud con la fuerza que desarrolla un powerlifter, donde vencer una fuerza con foco externo es el objetivo. Sin embargo, otros mecanismos bien descritos para la hipertrofia muscular son el estrés metabólico y el daño muscular (abandonada ya la hipótesis hormonal post-ejercicio (3) que en el entrenamiento de fuerza no resultan significativos debido principalmente al tiempo bajo tensión, rango de movimiento o al énfasis excéntrico entre otros factores.

Para ejemplarizar este hecho, si se compara a culturistas y powerlifters de élite, la apariencia estética varía considerablemente principalmente por su mayor masa muscular y menor índice de grasa corporal de los primeros respecto a los segundos, lo cual indica que una reducción a porcentajes de grasa similares, aún harían más visibles las diferencias en la hipertrofia entre ambos.

Ronnie Coleman y Konstantin Konstantinovs

  • Variabilidad en la respuesta al entrenamiento de fuerza

El entrenamiento de fuerza tiende a producir muy diferentes respuestas en grupos de sujetos que toman parte en un mismo estudio. Un ejemplo es el estudio realizado por Hubal y colaboradores (2005) (4), donde 585 sujetos (342 mujeres y 243 hombres) realizaron 12 semanas de entrenamiento realizando un ejercicio curl de bíceps con un brazo. Los cambios en el tamaño del bíceps braquial oscilaron entre -2 y + 59% (-0.4 a + 13.6cm) y las ganancias de fuerza sobre 1RM oscilaron aún más ampliamente de 0 a + 250% (0 a +10.2kg). Se cree que parte de esta variabilidad se origina en las diferencias en el estado inicial del sujeto, sus cualidades genéticas, y factores contaminantes durante el período de entrenamiento, por ejemplo, hábitos alimenticios, nivel de esfuerzo etc.

  • Efecto de la genética

La relación entre rendimiento deportivo y la genética está ampliamente aceptada pero en el ámbito de la hipertrofia es difícil de cuantificar. Hay muchas maneras en que los genotipos podrían afectar las ganancias en el tamaño del músculo después del entrenamiento de fuerza. Por ejemplo, la susceptibilidad genética al daño muscular durante el entrenamiento de fuerza podría conducir fácilmente a que algunos individuos requieran más tiempo para recuperarse que otros, lo que limita el volumen de entrenamiento  y esta, es una variable determinante en la hipertrofia de la que se hablará más adelante, y existe evidencia de que las características de las células satelites y su donación de núcleos pueden influir en la respuesta hipertrófica (5,6)

Un estudio que ha supuesto un gran avance en el conocimiento de los marcadores genéticos de rendimiento ha sido el reciente estudio de Jones y colaboradores  (2016) (7). Este estudio a largo plazo confirmó recientemente que hay un claro componente genético que marca el rango de repeticiones más óptimo.  Jones y colaboradores actuaron sobre el polimorfismo de nucleótidos específico que se conoce que influyen en la resistencia muscular y en la potencia y fueron capaces de predecir el tipo de entrenamiento que fue más efectivo. Esto puede implicar que parte de la variabilidad observada en grupos de sujetos después de un programa de entrenamiento de fuerza surge porque sus rangos de repetición no se corresponden con sus genotipos, es decir no se optimiza su máximo rendimiento en función de su genética. Probablemente, a medio-largo plazo se pueda conocer con exactitud el rango de repeticiones más óptimo para cada sujeto en función de su genética para maximizar su incremento de tamaño muscular en función de un análisis genético.

En siguientes entradas seguiremos con las diferentes variables que se relacionan con la hipertrofia y el aumento de la masa muscular.

Ángel Rodríguez

Preparador físico

angel-preparador-fisico-trainerclub

 

 

  1. Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research24(10), 2857-2872.
  2. Trezise, J., Collier, N., & Blazevich, A. J. (2016). Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. European journal of applied physiology116(6), 1159-1177.
  3. West, D. W., Burd, N. A., Tang, J. E., Moore, D. R., Staples, A. W., Holwerda, A. M., … & Phillips, S. M. (2010). Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. Journal of Applied Physiology108(1), 60-67.
  4. Hubal, M. J., Gordish-Dressman, H. E. A. T. H. E. R., Thompson, P. D., Price, T. B., Hoffman, E. P., Angelopoulos, T. J., … & Zoeller, R. F. (2005). Variability in muscle size and strength gain after unilateral resistance training. Medicine & Science in Sports & Exercise37(6), 964-972.
  5. Bamman, M. M., Petrella, J. K., Kim, J. S., Mayhew, D. L., & Cross, J. M. (2007). Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. Journal of Applied Physiology102(6), 2232-2239.
  6. Petrella, J. K., Kim, J. S., Mayhew, D. L., Cross, J. M., & Bamman, M. M. (2008). Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. Journal of applied physiology104(6), 1736-1742.
  7. Jones, N., Kiely, J., Suraci, B., Collins, D. J., De Lorenzo, D., Pickering, C., & Grimaldi, K. A. (2016). A genetic-based algorithm for personalized resistance training. Biology of sport33(2), 117.

Uso de cookies

“Trainerclub le informa para cumplir con el Real Decreto – ley 13/2012 de 30 de marzo que nuestro sitio web utiliza cookies tanto propias como de terceros para recopilar información estadística sobre su navegación, pudiendo deshabilitar esta opción desde su navegador”. Política de Cookies

ACEPTAR
Aviso de cookies